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We analyze the power spectrum of a regular binary thermal lattice gas in two
dimensions and derive a Landau–Placzek formula, describing the power spec-
trum in the long-wavelength, low frequency domain, for both the full mixture
and a single component in the binary mixture. The theoretical results are
compared with simulations performed on this model and show a perfect agree-
ment. The power spectrums are found to be similar in structure as the ones
obtained for the continuous theory, in which the central peak is a complicated
superposition of entropy and concentration contributions, due to the coupling
of the fluctuations in these quantities. Spectra based on the relative difference
between both components have in general additional Brillouin peaks as a con-
sequence of the equipartition failure.
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1. INTRODUCTION

Lattice-gas automata (LGA), as introduced by Frisch et al., (1) are ideal
testing systems for kinetic theory. Although they have a simple structure,
which makes them extremely efficient simulation tools, they still address
the full many-body particle problem. Much of the efficiency originates
from the discretization of the positions and velocities of the point-like par-
ticles onto a lattice. The simplified dynamics is a cyclic process: a streaming
step, where all particles propagate to neighboring lattice sites, followed by



a local collision step. The collisions typically conserve mass and momen-
tum, and in addition energy if the model under consideration is thermal.
Lattice-gases are capable of simulating macroscopic fluid flow, (1, 2) and

can be used for studying flow through porous media, (3) immiscible multi-
component fluids, (4) reaction-diffusion, (5) von Karman streets, (6) Rayleigh-
Bénard convection, (7) interfaces and phase transitions. (8) However, there are
practical problems when using LGA’s: the models are not Galilean-
invariant, temperature is not well-defined, the transport coefficient have
unexpected behavior as a function of temperature and density, and many
models contain spurious invariants. (9–11) It is therefore difficult to make
connections with realistic systems. Although in the early years the LGA’s
were thought to seriously compete with other fluid flow solvers, the main
line of research has shifted to a testing ground for concepts in kinetic
theory. The main motivation for this paper lies in the exploration of the
limits of thermal lattice-gas capabilities concerning diffusion-like phenomena.
Diffusion can be incorporated in LGA’s in several ways. The compu-

tational most efficient method is the color mixture, (2, 12, 13) which we have
analyzed in detail for a thermal model. (14) The otherwise identical particles
are in such a mixture painted with a probability corresponding to the con-
centration and a color-blind observer would not notice any difference, i.e.,
all transport properties are the same as for the single-component fluid. But
in addition there is an extra hydrodynamical and color-dependent diffusion
mode that does not interfere with the other modes.
In this paper we consider a different way to include diffusion, namely

the regular binary mixture. (12) In the regular binary mixture one has two
distinct species of particles, i.e., different mass. For particles of the same
species the exclusion principle holds and hence there can be at most one
particle of a given species in any velocity channel. There is, however, no
mutual exclusion for particles of different species. Consequently, a given
velocity channel can be occupied by two particles, provided they both
belong to different species.
One can interpret this as each specie living on its own but identical

lattice with exclusion. Since each specie is restricted to its own lattice there
can be no mass exchange between the two lattices and there is local mass
conservation for both species. Upon interaction, however, particles of both
lattices corresponding to the same node are able to exchange momentum
and energy, provided this does no violate local mass conservation and
exclusion for each species. Consequently, the dynamics of the regular
binary mixture is much more involved than that of the color mixture, but it
is closer to the dynamics of real fluids. For simplicity we here will assume
the special case of the two species having the same physical properties, i.e.,
the same mass, and distinguish both species by a different color label.
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We analyze the model at the microscopic level and focus mainly on the
behavior of the power spectrum. The coupling between energy transport
and diffusion that arises in these systems, results in a more complicated
structure of the power spectrum, (15–17) in which the central peak now con-
tains combined effects of both entropy fluctuations and concentration
fluctuations. Macroscopically this coupling manifests itself as the Dufour
effect (a concentration gradient induces a heat-flow) and the Soret effect
(a temperature gradient induces a diffusion flux).
The remainder of this paper is organized as follows. We start by

introducing the regular binary thermal lattice gas model in Section 2 and
use the molecular chaos assumption to obtain the linearized collision
operator. Section 3 is concerned with a mode analysis of the linearized
system, revealing the appearance of an extra diffusion mode. The modes
related to thermal diffusivity and mass-diffusion are coupled and form two
non-propagating, diffusive modes. Furthermore, in Section 4 we derive a
Landau–Placzek analogue, a formula which describes the power spectrum
in the hydrodynamic limit (long wavelength, small frequency domain), which
we check with simulation results performed on this system in Section 5. In
the final section we give a brief overview of the main results and some
concluding remarks.

2. THE REGULAR BINARY GBL-MODEL

The LGA model we like to consider here is a thermal model consisting
of two different interacting species of particles with identical mass. They
can be thought of to live on separate two-dimensional hexagonal lattices on
which they propagate independently, but red and blue particles corre-
sponding to the same node interact during the collision. The velocities are
discretized and have a spatial layout as shown in Fig. 1. They are distrib-
uted over four rings: one ring contains a single null-velocity, and three
rings each contain six velocities with magnitude 1, `3, and 2. The velocity
set is of size 19, and equivalent to the GBL-model, proposed by Grosfils et
al. (18) Since the model under consideration is basically a combination of
two GBL models, particles of different type (red and blue) can have the
same velocity. However, there can not be more than a single particle of
each type in a given velocity state. The multiple rings correspond each to a
different energy level and are a necessary requirement in order to introduce
thermal properties. This particular velocity set guarantees the absence of
spurious invariants and results in macroscopically isotropic behavior. (19)

The state of a node can be specified by a set of boolean occupation
numbers nim, denoting the presence or absence of a particle of type m=
{r, b} in velocity channel ci, where i is a label running over all 19 velocities.
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Fig. 1. The spatial layout of the velocity set of the regular binary mixture. It is identical to
the one for the GBL model, but now a channel can be occupied by a red particle, a blue par-
ticle or both at the same time.

Due to the boolean nature of the LGA, the ensemble average of the occupa-
tion numbersfim in equilibrium, is described by a Fermi-Dirac distribution(2)

fim — OnimP=
1

1+e−am+
1
2 bc2i −c · ci

(1)

where ar, ab, b, and c are Lagrange multipliers and fixed by setting the
value of the average red density rr=;ir fir, the average blue density
rb=;ib fib (or alternatively the total density r=rr+rb and the fraction
Pr of red particles), the average velocity ru=;im fimci, and the energy
density re=1

2;im fimc
2
i . Here, b is the inverse temperature, ar and ab fulfill

a chemical potential role, and c is a parameter conjugate to the flow veloc-
ity. In the remainder of this paper we will restrict ourselves to the global
zero-momentum case by putting c=0.
The lattice-gas Boltzmann equation, describing the time-evolution of

the average occupation numbers, is given by (2)

fim(r+ci, t+1)=fim(r, t)+Dim(f) (2)

where the nonlinear collision term Dim(f) is a summation over all pre-and
post-collision states s and sŒ

Dim(f)=C
s, sŒ
P(s) A(sQ sŒ)(s −im−sim) (3)

The collision rules that are used are taken into account by the transition
matrix A, which contains the probability that on collision a state is trans-
formed into an ‘‘equivalent’’ state. We denote the collection of states that
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can be transformed into each other by an equivalence class C=(Mr, Mb,
P, E), i.e., a class having the same red mass Mr=;i sir, the same blue
mass Mb=;i sib, the same momentum P=;ia siaci, and the same energy
E=;ia

1
2 siac

2
i . We adopt maximal collision rules, i.e., under collision a

state can transform in any other state within the same equivalence class,
including itself, thus fulfilling all conservation laws. Hence A(C)= 1

|C| ,
where we use |C| to denote the number of elements in the class C. The
density and energy density enter the collision operator through P(s), the
probability of occurrence of state s in equilibrium. In the Boltzmann
approximation, the velocity channels are assumed to be independent, hence
P(s) can be written as

P(s)=D
im
f simim (1−fim)

1−sim (4)

If the velocity fluctuations are sufficiently small a Taylor expansion of
the collision term in the neighborhood of the equilibrium distribution is
justified, (2) yielding the linearized collision operator W

(Wo)im, jn=C
s, sŒ
P(s) A(sQ sŒ)(s −im−sim) sjn (5)

where the diagonal matrix oim, jn is determined by oim, im=fim(1−fim), which
is the variance in the occupation number of a channel with the correspond-
ing labels. It can easily be checked from Eq. (5) that Wo is a symmetric
38×38 matrix. In contrast with the colored LGA, (14) o is a 38-dimensional
diagonal matrix due to the fact that there is no mutual exclusion of a red
and blue particle with the same velocity. It also enables us to introduce the
colored thermal scalar product, (11, 13, 14)

OA | BP=C
im
A(cim) B(cim) oim (6)

OA| W |BP=C
imjn
A(cim)(Wo)im, jn B(cjn) (7)

where we adopt the convention that the matrix o is attached to the right
vector.

3. PERTURBATION THEORY

In first approximation the behavior of the system can be obtained by
considering the fluctuations dfin(r, t)=fin(r, t)−fin and analyze these
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deviations from the uniform equilibrium state in terms of eigenmodes. The
solutions of the Boltzmann equation (2) are then of the form

dfin=km(k, ci) e−ık · r+zm(k) t (8)

where zm(k) represents the eigenvalue of the mode km at wavevector k. The
hydrodynamic modes are related to the collisional invariants and satisfy
zm Q 0 for k Q 0. There are five independent collision invariants an corre-
sponding to the conservation of the red and blue mass, the conservation of
momentum, and the conservation of energy

Oan | W=0 W |anP=0 (9)

|anP={|RP, |BP, |cxP, |cyP, |
1
2 c
2P} (10)

where |RPia=dar, |BPia=dab, and can be combined to form |rP=|RP+|BP.
It turns out that an equivalent and more convenient set of invariants is
given by the following five combinations which are mutual orthogonal with
respect to the colored thermal scalar product (6)

|anP={|cxP, |cyP, |pP=|
1
2 c
2P, |sP=|pP−c2s |rP, |dP} (11)

where |sP is the analogue to the microscopic entropy for the GBL model (19)

and c2s=
Op | pP
Op | rP the speed of sound following from the orthogonality

requirement Op | sP=0. The remaining invariant |dP is, contrary to the one
in the colored GBL model, (14) not simply the weighted difference between
the red and blue densities 1

OR | RP |RP−
1

OB | BP |BP, but is given by

|dP=1 |RP
Os | RP

−
|BP

Os | BP
2−1Op | RP

Os | RP
−
Op | BP
Os | BP
2 |pP
Op | pP

(12)

This form is determined by the requirement that it is orthogonal to the four
other invariants. In the case of equal red and blue density the last term on
the righthand side vanishes, but in general this is not the case. The origin of
this term is in fact the absence of equipartition in this model due to the
exclusion principle, which causes the ratio fir/fib to be dependent on the
velocity of the particles as can be seen from Eq. (1). Note that this last
invariant is also perpendicular to the density, i.e., Or | dP=0. Other useful
relations between these invariants are Or | pP=Or | c2xP=Or | c2yP and
Op | pP=Op | c2xP=Op | c2yP.
The choice of |sP and |dP made here is based on the correspondence of

the definition of |sP with the one made for the GBL model and its colored
counterpart. (14, 19) Since |sP nor |dP, with the exception of some special
limits, is going to be the zeroth order of an eigenmode the choice is
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somewhat arbitrary and any two linear combinations that are mutual
orthogonal could be used as well. The current choice, however, will facili-
tate us to make a connection with continuous theory and the proper
transport coefficients.
Note that this is similar to what is done in the case of continuous

theory and generalized versions of hydrodynamics (see ref. 16 and refer-
ences therein), where one also needs to obtain a set of variables that are
statistically independent based on thermodynamic fluctuation theory. This
does not uniquely fix these variables, and the freedom that remains can be
used in order to select an appropriate, orthogonal set for the specific
problem.
Following the method of Résibois and Leener (20) we need to find the

k-dependent eigenfunctions and eigenvalues of the single-time step Boltz-
mann propagator

e−ık · c(1+W) |k(k)P=ez(k) |k(k)P (13)

Of(k)| e−ık · c(1+W)=ez(k)Of(k)| (14)

where e−ık · c has to be interpreted as a diagonal matrix, and 1 is the identity
matrix. The symmetries of the matrices cause the left and right eigenvectors
to be related by fm(k)=e ık · ckm(k)/Mm, and form a complete biorthonor-
mal set

C
m

|kmPOfm |=1 Ofm | knP=dmn (15)

where we used m and n to label the different eigenfunctions and introduced
the normalization constantsMm.
To obtain the hydrodynamic modes characterized by z(k)Q 0 in the

limit k Q 0, we make a Taylor expansion of the eigenfunctions and eigen-
values

km(k)=k (0)m +(ık) k (1)m +(ık)
2 k (2)m +·· · (16)

zm(k)=(ık) z
(1)
m +(ık)

2 z (2)m +·· · (17)

where we already used that z (0)m =0. The functions km(k) will be determined
up to a normalization factor. As this normalization is not allowed to be
observable, and in fact will not be observable, we can choose it in a con-
venient way by

Ok (0)m | km(k)P=Ok (0)m | k
(0)
m P (18)
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which leads to

Ok (0)m | k
(n)
m P=dn0 Ok (0)m | k

(0)
m P (19)

Substitution of the expansions in Eq. (13) and grouping according to the
same order in k gives

W |k (0)m P=0 (20)

W |k (1)m P=(ca+z
(1)
m ) |k

(0)
m P (21)

W |k (2)m P=(ca+z
(1)
m ) |k

(1)
m P+[z(2)m +

1
2 (ca+z

(1)
m )

2] |k (0)m P (22)

with ca=k̂ · c and its orthogonal counterpart c+=k̂+ · c.
The solution of the zeroth order equation is straightforward and gives

|k (0)m P=C
n
Amn |anP (23)

with some unknown coefficients Amn. Substitution in the first order equa-
tion and multiplying with Oam | at the left gives for each m a linear equation
in the Amn

C
n
AmnOam | ca+z

(1)
m |anP=0 (24)

where we used that Oam | W=0. This set of equations has a solution
provided the determinant is zero, leading to the following eigenvalue equa-
tion for z (1)m

(z (1)m )
3 (Op | pPOca | caP(z

(1)
m )

2−Op | caP2)=0 (25)

where it is used that combinations containing an odd power of ca or c+ are
necessarily zero. This determines two of the five zeroth order eigenfunctions

|k (0)s P=|pP+scs |caP z (1)± =−scs (26)

where s=± denotes opposite directions parallel to k and

(z (1)s )
2=

Op | c2aP
2

Op | pPOp | rP
=c2s (27)

For the remaining three eigenfunctions we can only conclude at this level
that they satisfy z (1)m =0 and are formed by combinations of |dP, |sP, and
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|c+P only. On physical grounds it can be argued that |c+P will be a mode
on itself, however, it also will follow in a natural way later on.
The combination | jmP=ca+z

(1)
m |k

(0)
m P is called the current. We will

extend the definitions of the current jm and k (0)m to include s and d as a
possible value for m. This is for convenience, since strictly speaking |sP and
|dP will in general not be the source of an eigenfunction, but both will be a
linear combination of two ‘‘true’’ modes of the system.
With the introduction of these currents it follows immediately from

Eqs. (9) and (21) that invariants and currents are orthogonal

Ok (0)n | jmP=0 (28)

hence the currents lie in the complement of the null-space. Since this is not
affected by applying W we obtain

Ok (0)n | W
m | jmP=0 (29)

for any integer m, including negative values. Note that for negative values
of m the expression Wm | jmP is uniquely determined by the requirement that
the result has no component in the null-space. Therefore the solution of the
first order equation (21) can formally be written as

|k (1)m P=
1
W
| jmP+C

n

Bmn |k
(0)
n P (30)

with yet to be determined coefficients Bmn and also three still unknown
currents. The coefficients Bmm=0 as follows from the chosen normalization
(19) of the eigenfunctions.
Multiplying the second order equation (22) with Ok (0)l | at the left side

we find

0=Ok (0)l | (ca+z
(1)
l ) |k

(1)
m P+(z(1)m −z

(1)
l )Ok (0)l | k

(1)
m P

+z (2)m Ok (0)l | k
(0)
m P+12Ok (0)l | (ca+z

(1)
l )(ca+z

(1)
m ) |k

(0)
m P

+12 (z
(1)
m −z

(1)
l )Ok (0)l | (ca+z

(1)
m ) |k

(0)
m P (31)

Using the definition of the currents, substitution of the formal solution of
the first order equation (30), and using the orthogonality relations (28) this
leads to

z (2)m Ok (0)l | k
(0)
m P+(z(1)m −z

(1)
l ) BmlOk (0)l | k

(0)
l P=−Ojl |

1
W
+
1
2
|jmP (32)
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For l=m this gives the five transport coefficients

z (2)m =−
Ojm |

1
W
+12 |jmP

Ok (0)m | k
(0)
m P

(33)

and for l ] m

(z (1)m −z
(1)
l ) BmlOk (0)l | k

(0)
l P=−Ojl |

1
W
+
1
2
|jmP (34)

from which some of the values of Bml can be obtained, provided that
(z (1)m −z

(1)
l ) is nonzero, and of which the resulting expressions can be found

in Appendix A. Note that at this stage three of the zeroth order eigenfunc-
tions and their corresponding currents are still undetermined.
In the space of |dP, |sP, and |c+P one can rewrite Eq. (32) in the form

of a new eigenvalue problem in the still undetermined coefficients Amn

C
n

1Ojm |
1
W
+
1
2
|jnP+z

(2)
m Oam | anP2 Amn=0 (35)

Equating the determinant to zero we find that there are three different
eigenvalues and we can obtain the form of the remaining three zeroth order
eigenfunctions. Using the fact that there is no degeneracy we know that we
can diagonalize the matrix in terms of the proper functions. Hence the off-
diagonal matrix elements Ojm |

1
W
+12 |jnP need to vanish, which could already

be seen from Eq. (34) since for these modes we have z (1)m =0. It can also
easily be checked from symmetry considerations that |c+P is one of the
modes as was suggested earlier. The solution of the remaining two zeroth
order eigenfunctions is straightforward and leads to

|k (0)+ P=|c+P (36)

|k (0)s± P=|s±P=
|sP

`Os | sP
+(−t± `1+t2)

|dP

`Od | dP
(37)

where the prefactors are determined by the requirements

Os± | s+P=0 (38)

Ojs± |
1
W
+
1
2
|js
+
P=0 (39)
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and we have introduced the short hand notation

t —
q−D
2Q

(40)

with

q — −
Ojs |

1
W
+12 | jsP

Os | sP
(41)

D — −
Ojd |

1
W
+12 | jdP

Od | dP
(42)

Q — −
Ojs |

1
W
+12 | jdP

`Os | sPOd | dP
(43)

As the form of the last three quantities suggests by comparison with
Eq. (33), these quantities are related to transport coefficients. In the low
density limit and in the limit of only one specie, one can identify q as being
the thermal diffusivity of the GBL model. In the low density limit D will
correspond to the self-diffusion coefficient. Their interpretation as trans-
port coefficients is justified in Appendix B. The remaining value Q can not
be interpreted as a transport value, but rather is some measure of the
coupling between different modes.
Using Eq. (33) we can evaluate the five transport coefficients corre-

sponding to the hydrodynamic modes. In the case of the two soundmodes
(26) this leads to the sounddamping C

z (2)± =C=−
Oj±|

1
W
+12 | j±P

Ok (0)± | k
(0)
± P

(44)

while the perpendicular mode (36) gives rise to the viscosity n

z (2)+ =n=−
Oj+ |

1
W
+12 | j+P

Oc+ | c+P
(45)

By writing out the definitions of |s±P and | js±P and using the introduced
quantities (40)–(43) where needed, we can rewrite the second order eigen-
values of the two non-propagating modes |s±P as

s°±=−
Ojs± |

1
W
+12 | js±P

Os± | s±P
=
1
2
(q+D)±Q=1+(q−D)

2

4Q2
(46)
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In the low density limit one finds that the two eigenmodes (37) up to a
normalization factor will converge to |sP and |dP as defined in Eqs. (11)
and (12). Consequently one obtains s°± Q q, D, which is an illustration
of the decoupling of entropy and concentration fluctuations in this limit.
In general, however, these two ‘‘true’’ transport coefficients do not seem
to correspond with a conventional transport coefficient, but rather they
always appear in combination with each other, and it is only in the appro-
priate limits that they reduce to the thermal diffusivity and diffusion coef-
ficient. This is completely in agreement with the results known for the con-
tinuous theory, (16) where the coupling of fluctuations in concentration and
entropy results in the same effect.
In the present model, however, there is some ambiguity in the choice

made for the basic invariants. To arrive at this last formula it was only
necessary to assume that the invariants |sP and |dP, are mutually orthogo-
nal, and span a 2-dimensional subspace in the null-space which is perpen-
dicular to |caP, |c+P, and |pP. A good choice necessarily leads to the proper
modes in the fully known limit of one specie. Although this puts some
limitations on the possible choices it will not uniquely fix the basis. The
present choice for |sP in (11) is however the most natural extension of the
conventional formulation (19) and we will refer to q as being the generalized
thermal diffusivity.
This problem is more easily identified in the diffusion-like mode |dP.

In the present formulation (12), it contains in general a contribution pro-
portional to |pP, rather than being a weighted difference of the red and
blue densities only as found in the colored GBL model. (14) This already
suggests that this vector is not the proper generalization of the self-diffu-
sion mode. This is consistent with the continuous theory, (16) where the
analogue of the s°± also depend on more than the thermal diffusivity and
diffusion only. We will address this subject again in a later section.
Similar to the case of the GBL model we can introduce c, the ratio of

specific heats by

c=1+
Os | sP
Op | pP

=
Op | pPOr | rP

Op | rP2
=
c2s
c2T

(47)

with c2s=Op | pP/Op | rP the adiabatic speed of sound, c2T=Op | rP/
Or | rP the isothermal speed of sound. Two additional useful definitions
are yxy=cac+ and yxx=

1
2 (c

2
a −c

2
+). These allow us to rewrite the currents

related to the sound modes as | j±P=|jsP±cs |yxxP. Consequently this leads to

C=−
Ojs |

1
W
+12 | jsP+c

2
s Oyxx |

1
W
+12 |yxxP±2c

2
s Ojs |

1
W
+12 |yxxP

Op | pP+c2s Oca | caP±2cs Op | caP
(48)
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From symmetry considerations it follows that Op | caP=0 and Ojs |
1
W
+

1
2 |yxxP=0, and since Oyxx |

1
W
+12 |yxxP=Oyxy |

1
W
+12 |yxyP because of the iso-

tropy of the lattice, we obtain the following relation for the main transport
coefficients

C=1
2 (n+(c−1) q) (49)

An example of the full wave-vector dependent real eigenvalue spec-
trum is shown in Fig. 2, which also confirms the absence of spurious
invariants. Of all eigenvalues only the five related to the hydrodynamic
modes go to zero in the limit k Q 0. It is with these modes that the binary-
mixture responds to deviations from thermal equilibrium

z±(k)=−±ıcsk−Ck2 (50)

z+(k)=−nk2 (51)

zs±(k)=−s°±k2 (52)

The first two eigenvalues describe sound propagation in the two opposite
directions parallel to k with cs the adiabatic sound speed, the third eigen-
value describes the shear mode, and the last two eigenvalues represent
purely diffusive, non-propagating processes. In this hydrodynamic regime
characterized by kl ° 1, where l is the mean free path length, one can

0 1 2 3 4 5 6
k = k

x

- 4

- 3

- 2

- 1

0

R
e 

z µ(k
)

Fig. 2. The real part of the full eigenvalue spectrum as a function of the wavevector |k| in
reciprocal lattice units. The system parameters are r=6.0, e=1.0, and Pr=0.75. Note that
there are five hydrodynamic modes in the small wavevector limit. Two of them, related to the
soundmodes, coincide.

Regular Binary Thermal Lattice-Gases 295



exploit the fact that the real component of the eigenvalues of the hydrody-
namic modes is much smaller than that of the kinetic modes. We will use
this in the next section in order to obtain the Landau–Placzek formula (59)
for the power spectrum.
For larger wavevectors (here roughly 0.5 [ k [ 1.5) the relations

(50)–(52) start to deviate from the true values. This is the generalized
hydrodynamic regime (kl M 1), and the transport coefficients become k
dependent. The hydrodynamic modes are, however, still smaller than the
kinetic modes yielding a reasonable accurate Landau–Placzek formula. In
the kinetic regime (kl N 1) the hydrodynamic modes and kinetic modes
become of the same order of magnitude. The distinction between fast
and slow modes can not be made and all modes contribute to the power
spectrum.
In Fig. 3 the diffusive transport properties are shown at fixed reduced

temperature h=exp(− 12b). The modes s°± are the modes observed in the
eigenvalue spectrum and are combinations of q, D, and Q. In the low
density limit these two modes converge to the thermal diffusivity and dif-
fusion, i.e., s°+Q q, s°− QD, and is caused by the decoupling of the fluc-
tuations in the concentrations and entropy. In our model this means that
the ratio Q/(q−D) vanishes. The value of Q, however, will in general
remain small but finite due to the divergencies of the transport coefficients
in the low density limit of LGA. The same is observed in the high density
limit, which is merely an illustration of the duality of the LGA-model if one
interchanges particles and holes. In both cases this is a direct consequence
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Fig. 3. The ‘‘true’’ transport values s°±, and the transport coefficients q, D as a function of
the density at h=0.05 and Pr=0.75. In the low density limit, and by the duality of the model
also in the high density limit, the two sets converge.
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of the fact that the fluctuations in the occupation numbers become linear in
the average occupation densities, thus leading to equipartition.
As an additional remark we like to mention that the value of Q can be

both positive and negative. Therefore the correct curves of s°± need not be
continuous as a function of the density, but can contain discontinuities
located at points where Q changes sign. Consequently, depending on the
system parameters, the role of s°+ and s°− is interchanged with respect to q

and D. This is merely due to the choice in convention we have used in
Eq. (37) and of no physical importance.
For some intermediate values of the density one also finds that the

values of s°± and q, D coincide. This is, however, not caused by decoupling
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Fig. 4. The transport coefficients as a function of Pr at (a) r=4, h=0.05 and (b) r=0.25,
h=0.05. For low densities decoupling occurs for any composition, for higher densities only in
the limits Pr=1 and Pr=1/2.
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of the fluctuations. In these cases there is no effective equipartition, but one
obtains Q=0 as a consequence of the cancellation of terms. Moreover,
the location of these points depends in a non-trivial way on the system
parameters.
The diffusive transport properties versus the relative concentration of

both species at fixed density and reduced temperature h is shown in Fig. 4.
In the low density limit we have s°± Q q, D for all relative concentrations.
This is not generally true as can be seen from the higher density figure. It
does, however, reveal that the decoupling also occurs in general for the
single specie limits Pr Q 0 and Pr Q 1. This is not surprising, as in those
limits the model effectively reduces to a normal GBL model with only a
single diffusive mode related to the thermal diffusivity. This is actually also
the case in the high density limit of Fig. 3, because there one has a situation
in which the red lattice is almost completely filled and therefore an effective
blue system that remains.
Finally, decoupling can also be observed in the case Pr=Pb. In fact

this is a rather special limit and could be analyzed completely in a manner
similar to the one used for the colored GBL model, (14) because based on the
symmetry of the problem one can decompose the linearized Boltzmann
operator in two type of contributions, i.e., |RP+|BP and |RP−|BP.
For Pr=0 the diffusion mode vanishes, since we then recover the

original GBL model, but for Pr Q 0 the diffusion mode remains finite. This
case is illustrated in Fig. 5. Here, in the low density limit the diffusion
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Fig. 5. A comparison of the transport coefficients of the present model in the limit Pr Q 1
with those of the GBL model for fixed average energy density e=1.0. q coincides with the
thermal diffusivity qGBL of the GBL model, D matches the self-diffusion DGBL only for the
lower densities. The values of s°± are not shown but overlap completely with q and D.
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mode becomes equal to the self-diffusion of the GBL model (and hence
also equal to the diffusion mode in the GBL color mixture), but for higher
density they deviate. A behavior that finds its origin in the fact that the
color mixture does not allow more than one particle in a single velocity
channel and, although the number of particles of the second specie gets
very small, they still have a large impact on the diffusion.

4. LANDAU–PLACZEK THEORY

4.1. Full Spectrum

In the hydrodynamic regime of small wavevectors (kQ 0) and the
frequency w being linear in k, the spectral density S(k, w) can be expanded
in powers of ık. In this long-wavelength, small frequency limit the hydro-
dynamic modes are well separated from the kinetic modes, which can be
neglected due to their exponential decay. By keeping only terms up to
O(k2) (w/k is kept constant for consistency), one obtains the Landau–
Placzek approximation.
It has been shown that the dynamic structure factor can be evaluated

by (19)

S(k, w)
S(k)

=2 Re
Or| (e ıw+ık · c−1−W)−1+12 |rP

Or | rP
(53)

The closely related spectral function F(k, w) can be written as

F(k, w) — Or| (e ıw+ık · c−1−W)−1+12 |rP=2C
m

ReNmDm (54)

where

Dm=
1

e ıw−zm−1
+
1
2
%

z (2)m −ı(w−z
(1)
m k)

(z (2)m k
2)2+(w−z (1)m k)

2 (55)

Nm=Or | kmPOfm | rP (56)

The coefficientsNm are evaluated in Appendix A for small k and yield

Ns=
Or | rP
2c
11+ısk

cs
[C+(c−1) q]2 (57)

Ns±=
(c−1)Or | rP

2c
11± q−D

s°+−s°−
2 (58)
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From symmetry considerations one can conclude that the shear mode will
not contribute to the spectrum and one finds N+=0. Combining these
results with the expressions (54) and (55), we finally obtain the Landau–
Placzek formula, describing the power-spectrum in the hydrodynamical
domain

S(k, w)
S(k)

=
c−1

c
511+ q−D

s°+−s°−
2 s°+k

2

w2+(s°+k
2)2
+11− q−D

s°+−s°−
2 s°−k

2

w2+(s°−k
2)2
6

+
1
c
5 Ck2

(w+csk)2+(Ck2)2
+

Ck2

(w−csk)2+(Ck2)2
6

+
1
c
[C+(c−1) q]

k
cs
5 w+csk
(w+csk)2+(Ck2)2

−
w−csk

(w−csk)2+(Ck2)2
6

(59)

The spectrum contains an unshifted central peak that is formed by two
Lorentzians due to the two processes related to the non-propagating
modes s°±. The two propagating modes lead to the presence of the two
shifted Brillouin lines. Their width at half-height can be used as a mea-
surement of Ck2, the position of the peaks can be used a measurement of
±csk. The last two terms in Eq. (59) give an asymmetric correction to the
Brillouin peaks and induce a slight pulling of the peaks toward the central
peak.
The symmetry of the different contributions is such that the ratio of

the integrated contributions of the central peak and the Brillouin compo-
nents is constant and given by

;s > dw Re(NssDss )
;s > dw Re(NsDs)

=c−1 (60)

In Fig. 6 the Landau–Placzek formula is compared with the full
Boltzmann spectrum for two different wavevectors. For the smallest
wavevector inside the hydrodynamic regime they coincide, while for the
larger they differ considerably and indicates that this wavevector is outside
the hydrodynamic, and in fact inside the kinetic regime.
In general the contributions forming the central peak cannot easily be

separated. Even in the case they differ sufficiently in order to fit the central
peak with two Lorentzians, one only obtains information on the values
of s°±, which is not enough to determine the more interesting values of the
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Fig. 6. Boltzmann spectra and Landau–Placzek approximations for the full (a,c) and for the
red spectrum (b,d). The system parameters are r=10, Pr=0.25, e=0.75, kx=10×2p/512
(a,b) and r=1, Pr=0.35, e=1.0, kx=52×2p/512 (c,d). The solid and dotted curves are the
Boltzmann results and Landau–Placzek approximations respectively. Simulations results are
indicated by the points. The wavevector k is given in reciprocal lattice units, the frequency w

in reciprocal time (2p/T with T the total number of time steps), and the spectral functions in
reciprocal w units.

thermal diffusivity and diffusion. An example of this is shown in Fig. 7
where we decomposed the central peak in the two Lorentzians using the
theoretical expressions. For comparison we included the least square fit
according to Eq. (59) to the full range of the spectrum, including the
Brillouin peaks, where we only used a single Lorentz for the central peak.
For this reason it is important to consider the limits where decoupling

occurs, since in those cases the relevant transport values can be obtained
from the spectra. Here we have however an interesting difference with
respect to light scattering experiments. (16) Whereas in that case the sensi-
tivity of the dielectric fluctuations with respect to density is much larger
than with respect to temperature, the amplitude factors will differ
orders of magnitude. This results in the observation that the diffusion
component will usually dominate the spectrum. For LGA this does not
apply, and by using the decoupling limit s°± Q q, D on the first term of the
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Fig. 7. The central peak of the full spectrum at r=6.5, Pr=0.05, h=0.05, and
kx=4×2p/512. The Boltzmann spectrum and Landau Placzek formula overlap almost com-
pletely. The two isolated contributions of the central peaks in the later are indicated as well.
The fit is made on the simulation results (points) with a single central peak only. Note that
the two sound peaks fall outside the interval shown here.

Landau–Placzek formula (59), one immediately obtains that the central
component of the spectrum is given by a single peak characterized by the
thermal diffusivity

Scen(k, w)
S(k)

=
c−1

c

2qk2

w2+(qk2)2
(61)

One could in principle use this also in some of the intermediate cases seen
in Fig. 3. The location of these points in terms of density and relative
fractions, however, depends in a non-trivial way on the system param-
eters. Moreover, the identification with the thermal diffusivity and diffu-
sion can only be made if one interpret q and D as generalizations of these
quantities.

4.2. Red Spectrum

The red dynamic structure factor can be evaluated by (13, 14)

S red(k, w)
S(k)

=2 Re
OR| (e ıw+ık · c−1−W)−1+12 |RP

OR | RP
(62)
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It is possible to follow the same route for the red dynamic structure factor
as for the full spectrum. However, since Or | dP=0, but OR | dP ] 0, it is
more convenient to use a different set of basic invariants

|anP=3 |cxP, |cyP, |pP=| 12 c2P, |srP=|pP−
Op | pP
Op | RP

|RP, |drP4 (63)

where |drP is constructed to be perpendicular to the other conserved quan-
tities and defined by

|drP=|pP−1
Op | RP
OR | RP

|RP−
Op | RP2−Op | pPOR | RP

OR | RPOp | BP
|BP2 (64)

Note that by construction it is perpendicular to the red density, i.e.,
OR | dP=0. Analogous to the case of the normal density we introduce
some transport-like coefficients related to this basis

qr=−
Osr |

1
W
+12 |srP

Osr | srP
(65)

Dr=−
Odr |

1
W
+12 |drP

Odr | drP
(66)

cr=1+
Osr | srP
Op | pP

(67)

Obviously, the sound damping C, the modes s°±, and the speed of sound cs
are all unchanged, since these are true transport values and independent of
a chosen set of basis functions. Also in this case we can derive a Landau–
Placzek formula, describing the red power-spectrum in the hydrodynamical
domain

S red(k, w)
S(k)

=
cr−1

cr
511+qr−Dr

s°+−s°−
2 s°+k

2

w2+(s°+k
2)2
+11− qr−Dr

s°+−s°−
2 s°−k

2

w2+(s°−k
2)2
6

+
1
cr
5 Ck2

(w+csk)2+(Ck2)2
+

Ck2

(w−csk)2+(Ck2)2
6

+
1
cr
[(n−C)+2(cr−1) qr]

×
k
cs
5 w+csk
(w+csk)2+(Ck2)2

−
w−csk

(w−csk)2+(Ck2)2
6 (68)
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In principle the quantities qr, Dr, and cr can be expressed in the normal
transport values. However, these relations lead to more complex expres-
sions and are for that reason omitted here. In Fig. 6 this formula is
compared with the full Boltzmann red spectrum for a wave vector in the
hydrodynamic regime, yielding a satisfactory approximation, and one in
the kinetic regime with a large discrepancy.

4.3. Diffusion Spectrum

Finally we like to consider the spectra of the diffusive processes only.
Due to the nature of LGA, however, it is not obvious how to define diffu-
sion properly. On the one hand we have the requirement that a diffusive
process is not propagating, on the other hand one expects the diffusion
only to be related to the densities of both components in the mixture. As
we will show in this section, it turns out that these two views are not com-
pletely compatible.
In the colored GBL model (14) and in the continuous case (21) a diffusion

spectrum can be obtained by considering fluctuations in the normalized
difference of the red and blue density

rdiff=
rred

Pr
−

rblue

Pb
(69)

The proper translation in terms of invariants is given by

|diffP=
|RP
Pr
−
|BP
Pb

(70)

However, a spectrum based on this vector, does not lead to purely diffusive
peaks only, but also includes parts of the propagating modes. This can
easily be checked since the vector is in general not orthogonal to the two
soundmodes due to the absence of equipartition.
A simple solution is to subtract the propagating part by adding the

appropriate term proportional to |pP

|diffP=
|RP
Pr
−
|BP
Pb
−1Op | RP

Pr
−
Op | BP
Pb
2 |pP
Op | pP

(71)

In a binary athermal mixture, (12) however, it was suggested to use

|diffP=
|RP

OR | RP
−
|BP

OB | BP
(72)

304 Blaak and Dubbeldam



Unfortunately this choice also leads to a propagating mode in the thermal
case. One could again subtract the propagating part, but the result would
be different from (71). The origin of this problem is that we have two dif-
ferent diffusive modes and any linear combination would lead to a diffusive
spectrum. However, due to the lack of equipartition the different choices of
fluctuations one wishes to consider do not coincide, not even after the
propagating part is eliminated.
Naively one would expect a combination of the red and blue compo-

nent only and in addition it should be perpendicular to the propagating
modes. This leads to the following generalization of the athermal result
(72), which in the case of an athermal model would coincide

|diffP=
|RP

Op | RP
−
|BP

Op | BP
(73)

Obviously there is some freedom here in order to choose the generalization
of the diffusion. The natural extension would be one that satisfies the
appropriate limits. However, in the low density limit and in the limit
Pr Q 1, they all converge to the same value equal to the one found for the
single component GBL model. The special case of an equal density for red
and blue particles is not helpful either. This limit can be completely
analyzed in a manner analogous to what is done for the colored GBL
model. (14) For reasons of symmetry this will cause none of the definitions to
have a propagating character and the resulting diffusions would coincide.
In Appendix B we derive the proper definition (B.7) for the transport

values related to these quantities. Since none of them are proportional to a
single eigenmode the usual formulation (33) is no longer valid. The results
can be found in Fig. 8, where the diffusions obtained for the various diff ’s
are shown as function of the density. In general the five different diff ’s
described above all lead to different values for the corresponding transport
value, although depending on the choice of system parameters this differ-
ence might be marginal. Also compare with Fig. 3 to see the difference with
respect to D.
Although the choice (73) is the most natural generalization, the diffu-

sion is only properly identified in the limiting cases. In general some arbi-
trariness remains in a binary thermal lattice gas.
The corresponding diffusion spectrum is obtained by

S(k, w)
S(k)

=2 Re
Odiff | (e ıw+ık · c−1−W)−1+12 |diffP

Odiff | diffP
(74)

Regular Binary Thermal Lattice-Gases 305



0 5 10 15 20 25
ρ

0.0

0.5

1.0

1.5

2.0

D
if

fu
si

on
so

±  
Eq.(70)*
Eq.(72)
Eq.(72)*
Eq.(73)

Fig. 8. A comparison of the different diff ’s as a function of the density at h=0.05 and
Pr=0.75. The curves labeled by a f are corrected by subtracting the propagating part as is
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and shown in Fig. 9 for two diff ’s: the |diffP defined in Eq. (72) based on
an athermal model and the correct adjustment for the thermal model
Eq. (73). For comparison we also included the curve for which the propa-
gating part in Eq. (72) is subtracted as was described above. The first dif-
fusion spectrum has a Brillouin-like pair of peaks which is a manifestation
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Fig. 9. The Boltzmann diffusion spectrum based on Eqs. (72) and (73). The curve labeled by
a f is corrected by subtracting the propagating part as is described in the text. The system
parameters are Pr=0.15, r=10.0, and h=0.05. The wavevector k is given in reciprocal
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of the propagating part of |diffP according to (72), while the other two are
different superpositions of two Lorentzians characterized by s (0)± .

5. SIMULATION RESULTS

We have verified our results with simulation results. Some notes on the
implementation are in order. The model we consider is a true 38-bits
model, i.e., the collision operator can act on 238 different states. In a pre-
vious article we reported the simulation results of a colored GBL model. (14)

The number of states in that model was 319, since no red and blue particle
could exist with the same velocity. The simulations could, however, be per-
formed by realizing that the collisions could be separated in a normal GBL
collision followed by a redistribution of the colors over the different par-
ticles present. These two separated processes can easily be performed by
any computer.
In the present model this approach can not be used. One could of

course make use of the symmetries present in the model. The hexagonal
lattice leads to six rotations and two reflections. In addition we can make
use of the interchange of red and blue particles, and the interchange of
particles and holes. At best this would lead to a reduction with a factor of
48 on the total number of different states, but in practice this factor is less
because a large fraction of the states is invariant with respect to some of
these symmetries. This is however still too large in order to be applied in
any but the largest supercomputers available at present. An alternative, but
rather inefficient scheme, would be to store only part of the collision table
and generate other collisions on the fly.
Binary mixtures, however, do allow for a more convenient solution,

which is less efficient than storing the complete collision table, but still has
a relative good performance (about a factor 2–5 slower than the colored
GBL model). Rather than storing a collision table based on the states, we
make one based on the different classes. In the GBL model there are 29926
different classes C=(M, P, E), characterized by the total mass, momen-
tum, and energy. Since the the binary mixture is the combination of two
GBL models there are 299262 different combinations (CR, CB) of a red and
blue class which form a total of 4478568 classes C=(Mr, Mb, P, E). If we
combine this with the 48 symmetry operations we get a working algorithm
that already can be used on a computer with 256 MB of memory.
An arbitrary input state is now analyzed in order to determine to

which class C it belongs. From its characterization one can easily find
which transformation is needed in order put it in a form with MR [MB,
MR+MB [ 19, and 0 [ Py [ Px/`3. The last inequality confines the total
momentum to an angle of p/6. For each C in this limited set of classes
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only, all the classes CR, that with the appropriate class CB can give rise to it,
have been stored, including the number of states in each (CR, CB) combi-
nation. From this we generate with the proper weight an ‘‘outgoing’’ class
combination to which the inverse transformation is applied. Finally we
only need to determine a random state in CR and CB, which is just a GBL-
like process.
Simulation results along with the Boltzmann approximation and the

Landau–Placzek formula are shown in Fig. 6 for both the normal and red
spectrum. In the Figs. 6a and 6b the spectra at low k value completely
overlap and the Landau–Placzek formula describes the power spectrum
very well. If we increase the wavevector k, and/or lower the density, the
hydrodynamical regime is left and deviations start to appear. In that gen-
eralized regime, the transport properties are k-dependent. Figures 6c and
6d show a spectrum even further away from the hydrodynamic regime, in
the kinetic regime. Several kinetic modes invade the spectrum, and a
parameterization into Lorentzians has lost all physical meaning. The full
spectrum based on the Boltzmann approximation, however, still leads to a
very good description, supporting the molecular chaos assumption.

6. DISCUSSION

We have constructed a thermal binary lattice gas mixture. The model
is characterized by cross-effects between energy transport and diffusion.
The Landau–Placzek formula derived in the the low wavevector, low
frequency domain gives an excellent description. For larger wavevectors it
will fail, but the spectra can still accurately be described by the Boltzmann
approximation.
The Landau–Placzek formula for a regular binary thermal mixture is

quite similar in structure as the one for the continuous case. The main
feature is a central peak formed by two Lorentzians due to the coupled
entropy-concentration fluctuations. In the limits of low density, single
specie, their dual interpretations, and equal red and blue density it is pos-
sible for the central peak of the spectrum to be decomposed into two
Lorentzians with linewidths given by qk2 and Dk2, otherwise the linewidths
depend on both these values.
In the low density limit the true modes s°± converge to q and D.

Moreover, they can be identified with the thermal diffusivity and mass-
diffusion coefficient of the GBL model and coincide with the low density
limit of the continuous binary mixture. In contrast with continuous theory,
however, it is the thermal diffusivity that dominates the central part of the
spectrum, rather than the diffusion. The interpretation of q as the thermal
diffusivity can be extended to the general situation. For D this not true,
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since the related spectrum will contain Brillouin peaks, which is a not
a purely diffusive property. Although it is possible to correct for this,
there remains some ambiguity in the choice for the generalized diffusion
coefficient.
The analysis and results presented here are in general true for binary

thermal lattice gasses and not restricted to this particular model only. It
also reduces automatically to the proper formulation for an athermal
model, in which case some of the ambiguities are removed.

APPENDIX A

To calculate terms of the typeNm given in Eq. (56) we express the left
eigenvectors in terms of right eigenvectors, and expand Nm to linear order
in k

Nm=
Or | k (0)m P2

Ok (0)m | k
(0)
m P
11+2ık 5Or | k (1)m P

Or | k (0)m P
−
Ok (0)m | k

(1)
m P

Ok (0)m | k
(0)
m P
6

+ık 5Or | cak
(0)
m P

Ork (0)m P
−
Ok (0)m | cak

(0)
m P

Ok (0)m | k
(0)
m P
6+O(k2)2 (A.1)

As can be seen from the second term on the righthand side, partial knowl-
edge of the |k (1)m P is required. From the formal solution (30) of the first
order equation and the orthogonality relation (29) it follows that we only
need to evaluate the coefficients Bmn. From the normalization (19) we
already know that Bmm=0. In addition we like to mention that from sym-
metry considerations one can conclude that the mode related to the viscos-
ity will not contribute. Hence the values of Bm + and B+ m need not be
determined.
In order to facilitate the calculations we first list some simple relations

Ok (0)s | k
(0)
s P=2Op | pP (A.2)

Or | k (0)s P=Or | pP (A.3)

Or | s±P=
(1− c)

`Os | sP
Or | pP (A.4)

Os± | s±P=2`1+t2 (`1+t2 + t) (A.5)
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Most coefficients can be evaluated from the relation (34). In the case of the
soundmodes this leads to

Bs, −s=−
Oj−s |

1
W
+12 |jsP

(z (1)s −z
(1)
−s)Ok (0)−s | k

(0)
−sP

(A.6)

and with the use of | j±P=|jsP±cs |yxxP this can be rewritten in terms of
the basic transport coefficients

Bs, −s=s
n−(c−1) q

4cs
=

s(n−C)
2cs

(A.7)

The next coefficient we need to evaluate is

Bs±, s=−
Ojs |

1
W
+12 |js±P

(z (1)s± −z
(1)
s )Ok (0)s | k

(0)
s P

(A.8)

and here we can use the same relation to rewrite the current of the sound-
modes. For the other current the relation (37) can be used. Realizing that
the terms containing |yxxP will vanish, the remaining terms can be mani-
pulated to yield

Bs±, s=(c−1)
ss°±

2cs `Os | sP
(A.9)

From Eq. (34) we can now also see that

Bs, s±=−
Ok (0)s | k

(0)
s P

Os± | s±P
Bs±, s=−
11± t

`1+t2
2 ss°±`Os | sP

2cs
(A.10)

The last two coefficients which we will need are Bs±, s+ . However, since
z (1)s±=0 they can not be obtained from (34). In order for them to be deter-
mined we need to make use of the third order equation of the eigenvalue
problem (13)

W |k (3)m P=(ca+z
(1)
m ) |k

(2)
m P+[z(2)m +

1
2 (ca+z

(1)
m )

2] |k (1)m P

+[z(3)m +z
(2)
m (ca+z

(1)
m )+

1
6 (ca+z

(1)
m )

3] |k (0)m P (A.11)

As we only want to determine the values of Bs±, s+ , we do not attempt to
solve the complete third order equation but restrict ourselves to the two
equations from which they can be obtained. Note that we have z (1)s±=0 and
hence | js±P=|cas±P.
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Substituting these results in the third order equation, replacing m by s±,
and multiplying on the left with the appropriated term Os+ | we find

0=Os+ | ca |k
(2)
s±
P+Os+ | s°±+

1
2 c
2
a |k

(1)
s±
P+Os+ | z

(3)
s±
+s°±ca+

1
6 c
3
a |s±P (A.12)

The last term will disappear due to the odd power of ca and because
Os+ | s±P=0. In order to proceed we not only need the solution of the first
order equation (30) but also solution of the second order equation. Fortu-
nately the later does not have to be computed completely but the formal
solution will suffice

|k (2)m P=
1
W
(ca+z

(1)
m ) |k

(1)
m P+

1
W
1z (2)m +

1
2
(ca+z

(1)
m )

22 |k (0)m P+C
n

Cmn |k
(0)
n P

(A.13)

where the Cmn are some unknown coefficients. Substitution of both solu-
tions in Eq. (A.12) gives

0=Os+ | ca
1
W
ca |k

(1)
s±
P+Os+ | ca

1
W
1 s°±+

1
2
c2a 2 |s±P+C

n

Cs±n Ojs+ | k
(0)
n P

+Os+ | 1 s°±+
1
2
c2a 2
1
W
|cas±P+C

n

Bs±n Os+ |
1 s°±+

1
2
c2a 2 |k (0)n P (A.14)

The second and fourth term on the right are zero because of the odd power
in ca, the third term is zero because of the orthogonality relations (28).
Another substitution of the first order solution leads to

0=Os+ | ca
1
W
ca
1
W
ca |s±P+C

n

Bs±n Os+ | ca
1
W
ca |k

(0)
n P

+C
n

Bs±n Os+ |
1 s°±+

1
2
c2a 2 |k (0)n P (A.15)

The first term is again zero because of the odd power in ca. Writing out the
sum, using the orthogonality relations, and realizing that the shear mode
dependent term cancels due to symmetries this leads to

Bs±, s+ s°±Os+ | s+P+Bs±, s+ Ojs+ |
1
W
+
1
2
|js
+
P

+Bs±,+Ojs+ |
1
W
+
1
2
|cak

(0)
+ P+Bs±, − Ojs+ |

1
W
+
1
2
|cak

(0)
− P=0 (A.16)
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From symmetry considerations it follows that the terms with |k (0)± P only
contribute via |pP and by using the definition of the transport values on the
second term we obtain

Bs±, s+ (s°±−s°+ ) Os+ | s+P+(Bs±,++Bs±, −) Ojs+ |
1
W
+
1
2
|ca pP=0 (A.17)

Using the expressions for Bs±, s and the fact that s°+ and s°− are different, it
follows that Bs±, s+=0.
The evaluation of theN now becomes straightforward. The last term

at the righthand side of Eq. (A.1) will vanish because of symmetry reasons.
From the second term it can be observed that even if we would not have
chosen Bmm=0 as a normalization, this coefficient would not contribute to
the spectrum. For the viscosity we immediately obtainN+=0. In the case
of m=s this results in

Ns=
Or | pP2

2Op | pP
11+2ık 5Bs, −s+Bs, s+

Or | s+P
Or | k (0)s P

+Bs, s−
Or | s−P
Or | k (0)s P
62

=
Or | rP
2c
11+ısk

cs
[C+(c−1) q]2 (A.18)

where in the second line we have eliminated the viscosity. The |s±P lead to

Ns±=
(c−1)2 Or | pP2

2Os± | s±P
11+2ık 5Bs±,+

Or | k (0)+ P

Or | s (0)± P
+Bs±, −

Or | k (0)− P

Or | s±P
62

=
(c−1) Or | rP

2c
11± t

`1+t2
2 (A.19)

where the imaginary part cancels completely.

APPENDIX B

In general one defines a transport coefficient via the decay of small
fluctuations with respect to the equilibrium distribution. If we take df(k)
to be such a fluctuation, we obtain for a single timestep

ez(k)=
Odf| e−ık · c(1+W) |dfP

Odf | dfP
(B.1)

where the second order term in k of z(k) will be the transport coefficient.
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Naturally these fluctuations can always be written in terms of the
eigenfunctions of the linearized Boltzmann operator

|df(k)P=C
m

Okm | dfP
Okm | kmP

|km(k)P (B.2)

where the coefficients on the right-hand side are independent of k and
therefore can be obtained from the k=0 limit Okm | dfP/Okm | kmP=
Ok (0)m | df

(0)P/Ok (0)m | k
(0)
m P. Combining this formal expansion with Eq. (B.1)

and using the results of the eigenvalue problem (13) we obtain

ez(k)=
1

Odf | dfP
C
m

Okm | dfP
Okm | kmP

Odf| ezm |kmP (B.3)

If we restrict ourselves to fluctuations proportional to the hydrodynamic
modes, and thus assume the exponential fast decay of the kinetic modes,
the eigenvalues ezm can be expanded in terms of k. This results in

ez(k)=1+C
m

Okm | dfPOdf | kmP
Okm | kmPOdf | dfP

1 ıkz(1)m −k2 5z (2)m +
1
2
(z (1)m )

262+O(k3)
(B.4)

Note that the prefactors also depend on k, but can be rewritten as

Okm | dfPOdf | kmP
Okm | kmPOdf | dfP

=1Ok (0)m | df
(0)P

Ok (0)m | k
(0)
m P
22 Okm | kmP

Odf | dfP

=
Ok (0)m | df

(0)POdf (0) | k (0)m P

Ok (0)m | k
(0)
m POdf (0) | df (0)P

+O(k2) (B.5)

This allows us to calculate the lowest order terms of z(k) via

z (1)=C
m

Ok (0)m | df
(0)POdf (0) | k (0)m P

Ok (0)m | k
(0)
m POdf (0) | df (0)P

z (1)m (B.6)

z (2)+
1
2
(z (1))2=C

m

Ok (0)m | df
(0)POdf (0) | k (0)m P

Ok (0)m | k
(0)
m POdf (0) | df (0)P

1z (2)m +
1
2
(z (1)m )

22 (B.7)

It can easily be checked that in the case of a single eigenmode for the
fluctuation df these equations reduce to the normal results, in particular
Eq. (33). In general, however, such a formulation in terms of currents is not
valid. The fact that it nevertheless is consistent for Eqs. (41) and (42) is a
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consequence of the orthogonality relation (39) between the currents of the
two diffusive eigenmodes.
In the case of the different diffusions calculated in Section 4.3 we need

to make use of these equations, because the fluctuations under considera-
tion are not eigenmodes. From symmetry arguments it follows that in all
those cases z (1)=0, and strictly speaking none of these fluctuations will
therefore be propagating. In the case of Eqs. (70) and (72), however, the
soundmodes will contribute to the transport value (B.7) and spectra based
on these fluctuations will contain Brillouin peaks.
We finally like to mention that these results are only valid in the limit

kQ 0 and for small times, because if one considers the decay for larger
time intervals one would obtain

ez(k) t=
Odf| [e−ık · c(1+W)] t |dfP

Odf | dfP
=C

m

1Ok (0)m | df
(0)P

Ok (0)m | k
(0)
m P
22 Okm | kmP

Odf | dfP
ezmt

(B.8)

This results in a different behavior for short and long times in the case one
considers fluctuations that are not proportional to a single eigenmode (see
also ref. 15).
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